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Abstract

This work reports a set of approximate analytical solutions describing the transient process of gravity-induced
close-contact melting between a rectangular parallelepiped solid and a ¯at plate on which either constant

temperature or constant heat ¯ux is imposed. Not only relative motion of the solid block tangential to the heating
plate, but also the solid±liquid density di�erence is incorporated in the model. Normalization of the model
equations in reference to the steady state admits compactly expressed analytical solutions, which agree excellently

with the available numerical data. Based on the normalized liquid ®lm thickness that is independent of the
parameters, the transient time duration of close-contact melting is de®ned uniquely. The present solution is also
capable of resolving distinctive behaviors of the solid descending velocity at the early stage of melting. A geometric

function characterizing the three-dimensional e�ect is introduced, and its properties are clari®ed. It is found in the
case of constant contact area that as the cross-sectional shape deviates from square, heat transfer is at least
enhanced at the expense of the increase in friction between two solids. # 2000 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Close-contact melting is a basic phase change
phenomenon occurring at the interface of two solid
bodies in contact, one of which is heated above the

melting temperature of the other. It is involved in
various natural and technological processes [1]. From
the engineering viewpoint of primary interest are high
heat transfer rate due to direct contact and/or low fric-

tion by the action of the liquid ®lm formed between
the two solids. These features have already been or are
to be applied to some practical systems such as latent

heat storage, melt lubrication and burial of heat gener-

ating bodies [2].

During the past several decades, numerous

researches on contact melting processes have been

conducted for diverse geometrical con®gurations,

heat supplying modes, contact conditions and types

of relative motion between two solids, which have

recently been reviewed by Bejan [3]. According to

this review, theoretical models adopted for analyzing

close-contact melting phenomena have exclusively

relied on the assumption of quasi-steady state. That

is, most of the previous works have performed the

steady analysis. In view of an experimental result

[1], the initial transient process from the onset to

the quasi-steady state seems to be short compared
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with the whole close-contact melting. However, in

order to estimate whether the transient process can

be neglected or not, and to predict the transient re-

sponse of system to the change in imposed con-

ditions during a certain steady melting, the unsteady

analysis is needed. In addition, thorough under-

standing of the transient behavior itself would

deserve research attention in close-contact melting

area.

Few unsteady analysis has recently been reported

in the open literature. Hong and Saito [4] appears

to be the ®rst to investigate the initial transient

process as a separate subject. Using a sophisticated

model, they numerically solved full governing

equations for unsteady two-dimensional ¯ow and

heat transfer during close-contact melting between

ice kept at its freezing temperature and an isother-

mally heated ¯at plate. The same method has also

been applied to the case of constant wall heat ¯ux

[5]. These studies are worth addressing in that they

initiatively developed a numerical method for pre-

dicting the unsteady behavior, but seems to be

insu�cient for resolving the basic characteristics

such as the transient time duration. If an analytical

solution to the unsteady close-contact melting were

available, it would not only serve as a reference to

validate numerical simulations, but also be con-

venient for estimating the limitation involved in

steady analyses.

Based on the well-known analytical approaches to

quasi-steady problems [1,2,6,7], the present study is

intended to derive a set of analytical solutions for a

simpli®ed model of the unsteady close-contact melting.

For ease of the analysis, presumed are that the phase

change material is kept at its melting temperature, and

that the heating plate is ¯at and horizontal, as have

been commonly done in the previous studies [2,4,5].

The geometry of the solid block considered here is a

rectangular parallelepiped, so that the phenomenon

takes place three-dimensionally [2]. The analysis covers

both the cases of constant wall temperature and con-

stant wall heat ¯ux heating in the same framework.

Moreover, the model accounts for not only the density

di�erence between the solid and liquid phases, but also

relative motion of the solid block tangential to the

heating plate. In order to assess the simpli®cations

Nomenclature

A aspect ratio of contact surface, W/L
c liquid speci®c heat
f friction coe�cient, Fx=�Mg�
F force
g gravitational acceleration
~g dimensionless acceleration, gR3=a2

G geometric function, G 0=A
G ' geometric function, Eq. (17)
hsf latent heat of fusion

H height of the solid block
~H dimensionless height, H/R
k liquid thermal conductivity
Kn coe�cients, Eq. (A8)

L sliding-contact length, Fig. 1
M mass of the solid block
n non-negative integer

P pressure in the liquid ®lm
P1, P2 decomposed variables, Eqs. (A3)±(A5)
Pr Prandtl number, mc=k
qw wall heat ¯ux
~qw dimensionless heat ¯ux, qwR=�arshsf�
Q volume ¯ow rate

r radius of circular cross-section
R characteristic length
S source term
Ste Stefan number, c�Tw ÿ Tm�=hsf

t time
~t dimensionless time, ta=R2

t̂ normalized time, ~t ~Vc=� ~r~dc�
T temperature
Tm, Tw melting and wall temperature

u, v, w velocity components, Fig. 1
U velocity of relative motion
~U dimensionless relative velocity, UR=a
V solid descending velocity
~V dimensionless descending velocity, VR=a
V̂ normalized descending velocity, ~V= ~Vc

W depth of the solid block, Fig. 1
x, y, z Cartesian coordinates, Fig. 1

Greek symbols
a liquid thermal di�usivity, k=�rlc�
bn eigenvalues, Eq. (A7)
d liquid ®lm thickness
~d dimensionless thickness, d=R
d̂ normalized thickness, ~d=~dc
m viscosity
r density
~r density ratio, rl=rs

Subscripts
c steady state
l liquid phase

s solid phase
u unsteady period
x, y x, y direction
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introduced in modeling, the obtained results are com-
pared with the afore-mentioned numerical simulations

[4,5]. The discussion encompasses key features of the
analytical solutions, and the e�ect of the aspect ratio
of sliding-contact surface is highlighted.

2. Modeling

The physical system considered in this work is
depicted schematically in Fig. 1 together with the coor-
dinates. A rectangular parallelepiped solid block of

size L�W�H at its melting temperature Tm begins
to melt from t � 0 on the heating plate that moves at
a constant relative velocity U in the x direction due to
the tangential force Fx, while being in contact with the

plate by its own weight. There is no fundamental
di�erence in the analysis when contact is maintained
by the externally applied vertical force as in other

works [2,8] instead of the gravity. As the melting pro-
ceeds, a part of the liquid generated along the phase
change front ®lls up the growing gap between the

block and plate, and the rest is enforced to ¯ow and to
be squeezed out through the peripheral openings
around the contact area by the solid descending

motion. Both of the liquid ®lm thickness d and the
solid descending velocity V vary with time, and even-
tually attain the quasi-steady state where the melting
rate coincides with the solid descending velocity. Since

the friction exerted on the contact area also varies

during this process, the tangential force Fx should be
adjusted such that the velocity U is kept constant.

The present study is aimed at analyzing those transi-
ent behaviors from the onset to the steady state of
close-contact melting. Transition from one steady con-

tact melting to another caused by a certain change in
the imposed conditions belongs to the same category
of problems. As described before, the analysis is per-

formed for two representative heating modes: constant
wall temperature and constant wall heat ¯ux.
Despite relatively simple geometry, the phenomenon

is three-dimensional. In order to approach the problem
analytically, some simpli®cations have been introduced
within the extent of preserving the fundamental fea-
tures of close-contact melting. First, neglected are both

the heat generated by friction between direct contact
solids before the beginning of melting and viscous dis-
sipation of the ¯ow in the liquid ®lm after melting.

This is valid if the relative velocity between the solid
block and plate is not high [9]. A situation where fric-
tional heat or viscous dissipation is dominant should

be treated as a separate topic [2]. Second, the tangen-
tial force Fx acts in a way that the solid block does
not rotate about both the y and z axes [9]. Third, the

thin ®lm approximation holds for the liquid layer
throughout the whole process. The approximation
states that the transverse di�usion predominates over
the longitudinal di�usion as well as the inertia and

convection, and the pressure in the ®lm is uniform in
the crosswise direction [10]. Even in the steady close-
contact melting, the e�ect of convection relative to

conduction turned out to be negligible for Ste < 0:1
[11,12]. The second and third assumptions yield a uni-
form liquid ®lm thickness over the contact area [2].

Finally, the mass of solid block is assumed to be invar-
iant during the transient process. It seems to be
reasonable that the e�ect of mass variation is not sig-
ni®cant in the practical conduction-dominated process

unless the initial height of the block is very small com-
pared with the length scale of contact area. Moallemi
et al. [1] showed that the criteria of H=r > 0:1 (where r

is the radius of circular cross-section) and Ste < 0:1
ensure the validity of this assumption.
Regardless of the heating mode and the existence of

relative motion, the transient behavior of close-contact
melting is characterized by the timewise variations of
solid descending velocity and liquid ®lm thickness, i.e.

V�t� and d�t�, respectively. These dependent variables
are to be determined such that they satisfy the follow-
ing force and energy balances simultaneously. First,
the weight and inertia of the solid block, and the press-

ure in the liquid ®lm are related as [1,4]

M

�
gÿ dV

dt

�
�
�W=2
ÿW=2

�L=2
ÿL=2

P�x, y� dx dy �1�
Fig. 1. Schematic of the present close-contact melting system.

H. Yoo / Int. J. Heat Mass Transfer 43 (2000) 1457±1467 1459



Since the acceleration of the solid block, dV=dt, is
much smaller than that of the gravity, g, in conven-

tional systems, it is neglected here additionally [1].
Next, the energy balance at the solid±liquid interface is
expressed as

ÿ k
@T

@z

����
z�d
� rshsf

�
V� dd

dt

�
�2�

The term in bracket of Eq. (2) represents the unsteady
melting rate which is composed of the solid descending

velocity and the growth rate of ®lm thickness. One
thing to remark here is that the contribution of these
two terms to the pressure rise di�er from each other

(this is clari®ed later).
Meanwhile, the tangential force responsible for rela-

tive motion can be obtained from the total shear force

of the liquid ®lm as [2]

Fx � ÿ
�W=2
ÿW=2

�L=2
ÿL=2

m
@u

@z

����
z�0

dx dy �3�

3. Analysis

3.1. Model equations

For the closure of Eqs. (1)±(3), we have to express
the pressure in the liquid ®lm, interfacial temperature

gradient, and velocity gradient along the plate in terms
of the dependent variables. This can be done by sol-
ving the continuity, momentum, and energy equations

in the liquid ®lm. Owing to the thin ®lm approxi-
mation, they are simpli®ed as [2]

@u

@x
� @v
@y
� @w
@z
� 0 �4�

@P

@x
� m

@ 2u

@z2
�5�

@P

@y
� m

@ 2v

@z2
�6�

@ 2T

@z2
� 0 �7�

Since the temperature is still a function of t as well as

z due to the moving interface, i.e. d�t�, Eq. (7) retains
the partial derivative. The boundary conditions for vel-
ocity components are

u � U; v � w � 0 at z � 0 �8�

u � v � 0; w � ÿrs

rl

Vÿ rs ÿ rl

rl

dd
dt

at z � d �9�

It should be remarked that the condition for w in Eq.
(9) re¯ects the e�ect of solid±liquid density di�erence.

The ®rst and second terms on its right-hand side
denote the blowing of liquid due to the descending
solid and the excess or de®cient volume due to the ®lm
growth, respectively. As for the temperature, the

boundary conditions are evidently T � Tw (constant
wall temperature) or ÿk�@T=@z� � qw (constant heat
¯ux) at z � 0, and T � Tm at z � d:
Since the pressure distribution in the liquid ®lm,

P�x, y�, has already been derived [2], the procedure is
condensed here. Solving Eqs. (5) and (6) subject to the

boundary conditions (8) and (9), we get

u�x, y, z� � 1

2m

�
@P

@x

�
z�zÿ d� �U

�
1ÿ z

d

�
�10�

v�x, y, z� � 1

2m

�
@P

@y

�
z�zÿ d� �11�

These allow us to obtain the x and y directional
volume ¯ow rates through the ®lm,

Qx �
�d
0

u dz � 1

12m

�
ÿ @P
@x

�
d3 � 1

2
Ud �12�

Qy �
�d
0

v dz � 1

12m

�
ÿ @P
@y

�
d3 �13�

respectively. Substitution of Eqs. (12) and (13) into the
continuity equation integrated with respect to z, i.e.

@Qx

@x
ÿ
�
rs

rl

V� rs ÿ rl

rl

dd
dt

�
� @Qy

@y
� 0 �14�

results in the following partial di�erential equation for

P�x, y�:

@ 2P

@x 2
� @

2P

@y2
� ÿ12m

d3

�
rs

rl

V� rs ÿ rl

rl

dd
dt

�
�15�

Note that the right-hand side of Eq. (15) is indepen-
dent of x and y.

Assuming that the pressure in the ®lm equilibrates
with that of the environment along the periphery of
contact surface irrespectively of relative motion [2], the

boundary conditions for Eq. (15) are homogeneous,
i.e. P�2L=2, 2W=2� � 0: It is a known fact that the
Poisson equation subject to such conditions admits an

exact solution [2]. The derivation procedure is summar-
ized in Appendix A. By substituting Eq. (A6) into Eq.
(1), the force balance reduces to
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rsLWHg � mL3W

d3

�
rs

rl

V� rs ÿ rl

rl
dd
dt

�
G 0 �16�

where G 0 is a function of the aspect ratio of contact
area, A, and de®ned as

G 0�A� � 1ÿ 192

p5A

X1
n�0

tanh
��2n� 1�pA=2�
�2n� 1�5 �17�

The function proved to have the property of
G 0�1�41 and G 0�0�4A2 [2].
The interfacial temperature gradient can be readily

determined from Eq. (7), so that the energy balance
for each of the heating modes is rewritten as

k�Tw ÿ Tm �
d

� rshsf

�
V� dd

dt

�
�18�

qw � rshsf

�
V� dd

dt

�
�19�

respectively. For the later use, the dependence of the

wall temperature variation for constant heat ¯ux on
the ®lm thickness is identi®ed here as

Tw�t� � Tm � qwd�t�
k

�20�

Using the known velocity pro®le, Eq. (10), we can
simplify Eq. (3) as

Fx � mULW

d
�21�

The tangential force driving relative motion is
expressed in terms of the liquid ®lm thickness. In con-

sequence, the system of model equations for determin-
ing the dependent variables V�t� and d�t� consists of
two simultaneous ®rst-order ordinary di�erential

equations Eqs. (16) and (18) or (19). Note that the
model equations reduce to algebraic ones in the steady
analysis.

3.2. Nondimensionalization and normalization

In order to verify the characteristic parameters perti-
nent to the present system, the model equations are
nondimensionalized. Let the characteristic length be R,

then Eq. (16) can be rewritten in terms of the dimen-
sionless quantities de®ned in Nomenclature as�

~V� ÿ1ÿ ~r
�d~d

d~t

��
L

R

�2

G 0 �
�

~g ~H

Pr

�
~d
3 �22�

Depending on the type of applications, a convenient
length scale can be taken. Here, we tentatively adopt
R � �LW �1=2 as the characteristic length, since it seems

to be appropriate for examining the e�ect of aspect
ratio under constant contact area. This leads Eq. (22)

to

~V� ÿ1ÿ ~r
�d~d

d ~t
�
�

~g ~H

GPr

�
~d
3 �23�

where G � G 0=A: The dimensionless forms of Eqs. (18)
and (19) become independently of the length scale,

~V� d~d
d~t
� ~rSte

~d
�24�

~V� d~d
d~t
� ~r ~qw �25�

respectively. Note that the three-dimensionality is rel-
evant only to the force balance through a geometric
function G�A�:
For ease and generalization of the analysis by elimi-

nating the parameters appeared in Eqs. (23) and (24)
or (25) as far as possible, attempted is normalization
in reference to the steady solution. Since d~d=d~t � 0 in

the steady state, each set of solutions for the two heat-
ing modes is readily derived, respectively, as follows:

~Vc �
�

~g ~H

G Pr

�1=4ÿ
~r Ste

�3=4
,

~dc �
�

~g ~H

G Pr

�ÿ1=4ÿ
~r Ste

�1=4 �26�

~Vc � ~r ~qw,
~dc �

�
~g ~H

G Pr

�ÿ1=3ÿ
~r ~qw

�1=3 �27�

where the subscript c denotes the steady-state. Accord-

ing to the de®nition of normalized variables, Eqs.
(23)±(25) further reduce to

V̂�
ÿ
1ÿ ~r

�
~r

dd̂
dt̂
� d̂

3 �28�

V̂� 1

~r
dd̂
dt̂
� d̂

ÿ1 �29�

V̂� 1

~r
dd̂
dt̂
� 1 �30�

respectively. Note that the normalized model equations
include the density ratio only, and are far more com-
pact in expression than the dimensionless counterparts.
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3.3. Analytical solutions

Each set of normalized equations for the two heat-

ing modes can be readily solved to yield an analytical
solution. For the case of constant wall temperature, we
can derive a di�erential equation for d̂ by eliminating

V̂ from Eqs. (28) and (29),

dd̂
2

d~t
� 2

�
1ÿ d̂

4
�

�31�

Solving Eq. (31) along with the initial condition,
d̂�0� � 0, results in

d̂�t̂� � tanh1=2�2t̂� �32�

It is easy to express V̂�t̂� in terms of d̂�t̂� from Eqs.
(28) and (29) as

V̂�t̂� � ~rÿ 1

~rd̂
� d̂

3

~r
�33�

Note that Eq. (33) reduces to an explicit function of t̂
when ~r � 1, i.e.

V̂�t̂� � tanh3=2�2t̂� �34�
The same procedure also applies to the case of con-

stant heat ¯ux. From Eqs. (28) and (30), we have

dd̂
dt̂
� 1ÿ d̂

3 �35�

The solution of this equation subject to d̂�0� � 0 is cast
in an implicit form,

t̂ � 1

3
ln

�
1� d̂� d̂

2
�1=2

1ÿ d̂
� 1���

3
p tanÿ1

���
3
p

d̂

2� d̂
�36�

Again from Eqs. (28) and (30), V̂�t̂� is expressed as

V̂�t̂� � ~rÿ 1

~r
� d̂

3

~r
�37�

The variation pattern of d̂�t̂� may not be perceived
directly from Eq. (36). However, it can be calculated

without di�culty because d̂ is monotonic in t̂:
A few observations can be made on the above sol-

utions. The normalized liquid ®lm thicknesses for both

cases, i.e. Eqs. (32) and (36), are free completely from
the characteristic parameters. Such independency plays
an important role, as is shown later, in de®ning the

unsteady period (time elapsed from the beginning to
the steady state of melting) uniquely. In this sense, the
present normalization seems to be successful. On the

other hand, the solid descending velocity retains the
density ratio. This is not caused by improper normali-
zation, but is a natural consequence from the present
model accounting for the solid±liquid density di�er-

ence. Finally, an individual e�ect of all the parameters
but the density ratio appears only in the steady sol-
ution. Only if the density ratio is ®xed, the normalized

solution represents a universal behavior of the
unsteady close-contact melting.
The tangential force, Eq. (21), can be converted into

the dimensionless form by de®ning a friction coe�cient
as [2,9]

f � Fx

Mg
�
 

~r Pr

~g ~H

!
~U~d
ÿ1 �38�

Once d̂�t̂� is known from the normalized solution, the
variation of friction coe�cient under speci®c con-
ditions is readily calculated.

4. Discussion

4.1. Validation

One of the most desirable ways to validate an ana-
lytical model is to compare its result with precisely
measured data, but no experiment on the unsteady

close-contact melting has yet been reported. Fortu-
nately, two sets of numerical data for each of the two
heating modes are available. Listed in Table 1 are the

Table 1

Reference conditions used for validation and discussion

Heating mode Constant wall temperature [4] Constant heat ¯ux [5]

Cross-sectional shape Two-dimensional rectangular Axisymmetric

Pr 13.44 13.44
~H 1.0 1.0

~g 5.521� 1011 5.521� 1011

G 4.0 1.5

~r 1.0 1.09

Ste 1.266� 10ÿ2 ±

~qw ± 24.57
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geometric con®guration and dimensionless melting
conditions considered in each of the numerical simu-
lations [4,5]. Due to di�erent geometry and character-

istic length in each case, the function G appeared in
the present solution should be replaced by a speci®c
value. The previous study [1] has shown that it is 4 for
the two-dimensional rectangular solid with in®nite

depth and 1.5 for the circular cross-section, respect-
ively. The ®rst one can be veri®ed by examining the
term �L=R�2G 0 in Eq. (22) under R � L=2 and A � 1
along with the property of G 0 described earlier,
whereas the second requires a separate axisymmetric
analysis using R � r:
The evolutions of the liquid ®lm thickness and solid

descending velocity by the present solution are com-
pared with those by the numerical data for constant

wall temperature in Fig. 2 and for constant heat ¯ux
in Fig. 3, respectively, both in the normalized forms.
Regardless of the heating mode, the present solution
agrees excellently with the numerical data, which indi-

cates that not only the simplifying assumptions intro-
duced in modeling, but also the solution procedure are
proper and valid. In particular, the present solution

successfully resolves the e�ect of density di�erence in

that V̂�0� is non-zero when ~r 6� 1, as shown in Fig. 3,
which will be discussed further in the subsequent sec-

tion. Another observation reads that the steady state is
attained earlier in constant wall temperature than in
constant wall heat ¯ux on the normalized time scale.

In association with conducting an experiment of the
unsteady close-contact melting, the following aspect
deserves to note. A high degree of care should be paid

either for keeping the wall temperature constant or for
directly measuring the transient ®lm thickness and
solid descending velocity. In contrast, the supply of

constant heat ¯ux and measurement of the transient
wall temperature seem to be relatively easy. Under the
constant heat ¯ux condition, Eq. (20) leads to the re-
lation between the normalized ®lm thickness and

dimensionless wall temperature, i.e.

Tw ÿ Tm

Twc ÿ Tm

� d̂�t̂� �39�

where Twc is the wall temperature at the steady state.
If d̂�t̂� is known from this relation and the measured
temperature variation, the solid descending velocity
V̂�t̂� can be calculated from Eq. (30). Neither d̂�t̂� nor
V̂�t̂� needs to be measured directly.

4.2. Properties of the solution

In order to understand the basic characteristics of the
unsteady close-contact melting, representative properties

of the present solution are addressed. Plotted in Fig. 4
are the evolutions of the normalized ®lm thickness for
the two cases under consideration. Both curves show a

common trend that they increase from 0 and asymptoti-
cally approach the steady state as the normalized time
elapses, but the variation pattern depends on the heating

mode. Note that the initial growth rate of the ®lm thick-
ness, dd̂�0�=dt̂, for constant wall temperature is in®nity
(Eq. (31)), whereas that for constant heat ¯ux is unity

Fig. 3. Comparison of the present solution with the numerical

data for constant wall heat ¯ux.

Fig. 4. Evolution of the normalized liquid ®lm thickness for

each heating mode.

Fig. 2. Comparison of the present solution with the numerical

data for constant wall temperature.
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(Eq. (35)). This also causes the afore-mentioned di�er-
ence in the unsteady period between the two cases. In

view of Eq. (39), the curve for constant heat ¯ux also
represents the wall temperature variation.
As evident in Eqs. (33) and (37), the transient beha-

vior of the normalized solid descending velocity is
a�ected essentially by the density ratio ~r: Fig. 5 illus-
trates its evolutions corresponding to three typical

values of ~r for each case. The dependence of V̂�t̂� on ~r
is more drastic in the case of constant wall temperature
due to the in®nite initial values when ~r 6� 1, especially

during the early stage. The curves for ~r < 1 and ~r � 1
increase monotonically with time starting from ÿ1
and 0, respectively, whereas that for ~r > 1 shows
decreasing±increasing pattern from �1: In the case of

constant heat ¯ux, on the other hand, three curves
vary similarly in pattern except that their initial values
are di�erent. Note that the initial values are ®nite in

this case, i.e. V̂�0� � � ~rÿ 1�= ~r: Here the important
point is that every curve for ~r 6� 1 is discontinuous at
t̂ � 0 in both cases. Such distinctive features of the

solid descending velocity during the transient process
have ever been reported in the numerical simulations.
Hong [13] qualitatively predicted the decreasing±

increasing pattern in close-contact melting of ice on an
isothermal plate where ~r � 1:09, but a seeming numeri-
cal roughness makes it di�cult to compare the simu-
lated result with the present one quantitatively. The

non-zero but ®nite value of V̂�0� in constant heat ¯ux
heating has already appeared in Fig. 3.
In view of the fact that there is no phase change at

t̂ � 0ÿ, the predicted discontinuous phenomenon across
t̂ � 0 is unlikely to occur in reality, possibly due to
incomplete thermal contact, initial subcooling in the

solid, viscous e�ect, and so on. Those factors, however,
have been excluded in theoretical models, not only
because they may not a�ect the fundamental nature of
close-contact melting except at the beginning stage, but

also because they are hard to model properly. Deducing
from physical intuition, they seems to act on the actual

process in a manner to smooth out the initial discontinu-
ity. Another factor leading to the discontinuous beha-
vior would be the neglection of inertia terms both in the

force balance and in the momentum equations. How-
ever, considering that the afore-mentioned numerical
simulations for ~r 6� 1 [5,13], where the full-scale

equations were used, agree favorably with the analytical
solutions even near t̂ � 0, the inertia seems to play a
minor role throughout the whole process. To summar-

ize, the present V̂�t̂� without accounting for those e�ects
can be regarded as an asymptotic limit of the actual
phenomenon from t̂ � 0� to t̂ � 1: This deduction
should be veri®ed by a precise experiment.

Nevertheless, it is possible to explain the initial
behavior of V̂�t̂� for ~r 6� 1 physically. Since the discon-
tinuity disappears in case of ~r � 1, it can be attributed

to the density ratio. Let us consider a situation that
the speci®c volume of the liquid is larger than that of
the solid, i.e. ~r < 1: As the heating begins, a part of

the liquid generated by melting ®lls up the gap orig-
inally occupied by the solid, and the rest of the liquid,
i.e. the excess liquid expressed by the term �1ÿ ~r�= ~r in

Eq. (28), induces an abrupt rise of the pressure in the
®lm because the gap is so thin that the longitudinal
¯ow can not be still established. The pressure rise, in
turn, bring forth a discontinuous ascending motion of

the solid block. In the opposite situation � ~r > 1�, the
de®ciency of the liquid causes a discontinuous descend-
ing motion at the very beginning of melting. Those

phenomena attenuate sharply with growing the gap
and intensifying the ¯uid ¯ow through the gap while
keeping the force balance.

One of the interesting results in the present analysis
is the transient period. Since the transient state always
entails the actual process, its e�ect needs to be esti-
mated. As an example, consider an experiment to

measure the steady close-melting rate under prescribed
conditions. If we know a priori the time duration from
the onset to the quasi-steady, the data acquired during

the transient process can be discarded e�ectively. Due
to the asymptotically approaching nature toward the
steady state, the unsteady period, tu, may be de®ned in

various ways. In this context, a convenient aspect of
the normalized ®lm thickness, i.e. the independence on
any parameters, is useful for de®ning t̂u, uniquely. For

example, adopting the time corresponding to 1ÿ d̂ �
10ÿ3 as t̂u, we have t̂u � 1:727 for constant wall tem-
perature from Eq. (32) rewritten as

t̂ � 1

4
ln
1� d̂

2

1ÿ d̂
2

�40�

and t̂u � 2:788 for constant heat ¯ux from Eq. (36), re-

Fig. 5. Evolutions of the normalized solid descending velocity

corresponding to three typical values of the density ratio for

each heating mode.
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spectively. The unsteady period in real time, tu, corre-
sponding to t̂u can be readily calculated. Speci®cally, tu
for each set of conditions in Table 1 is evaluated as
about 11.4 and 8.5 s, respectively.

4.3. Aspect ratio of contact surface

Among the dimensionless parameters characterizing

the present system, the aspect ratio of contact surface,
A, needs further discussion, because it solely represents
the three-dimensionality. The function G which is a

function of A only can e�ectively take the place of the
aspect ratio under the constraint of constant contact
area. Fig. 6 shows the curve of G�A�: Since the coordi-

nates x and y are commutative, as evident geometri-
cally, G is symmetric about A � 1 (square cross-
section). The function G attains its maximum at

A � 1�G�1� � 0:421731�, and behaves like Aÿ1 with
approaching both of the extremes, i.e. for A� 1 and
A� 1, in accordance to the property of G ' described
earlier. Owing to the symmetry, our discussion is made

for A > 1: The circular cross-section is also considered
here as a reference for constant contact area. It is easy
to verify that this case corresponds to G � 1:5=p by

taking the characteristic length as p1=2r instead of r
that has been used for an axisymmetric solid block [1].
The marked point in Fig. 6 means a circular equival-

ence of the rectangular cross-section having the same
contact area.
Physically, the function G can be viewed, in an aver-

age sense, to represent the resistance of ¯ow through

the liquid ®lm. When the contact area is kept constant,
the mean ¯ow path becomes shorter with increasing
the aspect ratio, thereby making easy the out¯ow of

liquid generated along the melting front. In order to
investigate the e�ect of aspect ratio on the unsteady
close-contact melting process, the evolutions of depen-

dent variables corresponding to A � 1, 10 and circular

cross-section are compared in Fig. 7 for constant wall

temperature and in Fig. 8 for constant heat ¯ux, re-
spectively, under the same melting conditions listed in
Table 1. All the results are expressed in terms of the

dimensionless quantities to show the e�ect speci®cally.
In both cases, the shorter the perimeter of contact sur-
face, not only the thicker the steady ®lm thickness, but

also the longer the unsteady period. The solid descend-
ing velocity shows the same time dependency as the
®lm thickness. Its steady values for the case of con-
stant wall temperature increase with increasing the

aspect ratio, whereas those for the case of constant
heat ¯ux are independent of the cross-sectional geome-
try, as is clear in Eq. (27). Note here that the relation

between ~tu and A can be drawn easily based on the
afore-mentioned uniqueness of t̂u: Regardless of the
heating mode, it can be said that as the function G

decreases, heat transfer is at least enhanced at the ex-
pense of the increase in ¯ow friction (see Eq. (38)).

Fig. 7. E�ect of the aspect ratio of contact surface on the

evolutions of dependent variables in comparison to the case

of circular cross-section for constant wall temperature.

Fig. 8. E�ect of the aspect ratio of contact surface on the

evolutions of dependent variables in comparison to the case

of circular cross-section for constant wall heat ¯ux.

Fig. 6. Variation of the geometric function with respect to the

aspect ratio of contact surface.
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Since the e�ect of other parameters can be estimated
easily via the steady solution implied in the normalized

variables, as noted before, it is not dealt with here.

4.4. Application

The analysis performed so far has been based on a
characteristic length appropriate for the case of constant

contact area, and thereby the discussion has focused on
a geometric function G de®ned in terms of the aspect
ratio. However, such a length scale is not the only

choice, but can be replaced by convenient alternatives
within the framework of the present analysis.
As a representative example, consider the problem in

which a constant-volume rectangular parallelepiped
solid of variable contact area and height undergoes
close-contact melting with relative motion. It is more
convenient in this case to adopt R � �LWH �1=3 instead

of R � �LW �1=2 as the characteristic length, because
the former is constant. Substituting this into Eq. (22),
we have a new dimensionless force balance equation,

~V� ÿ1ÿ ~r
�d~d

d~t
�
 

~g ~H
2

G Pr

!
~d
3 �41�

while the others, i.e. Eqs. (24), (25) and (38), being
kept unchanged. Since the only change by adopting

the new length scale is ~H
2
in Eq. (41) in place of ~H in

Eq. (23), the steady solutions essentially remain the
same as Eqs. (26) and (27) except the very change,

thereby the normalized solutions being una�ected.
Table 2 presents the e�ects of geometric con®guration

on the selected characteristics of close-contact melting in

reference to the cube � ~H � 1; A � 1� having the same
volume, where the total steady melting rate is de®ned as
VcLW: As the contact area increases, i.e. with decreasing
the height, melting is enhanced, the degree of which

depends on the heating mode. That is, the total steady
melting rate for constant wall temperature is pro-
portional to the square root of the contact area, whereas

that for constant heat ¯ux is linear (note the relation
between the contact area and dimensionless height,
LW � ~H

ÿ1
R2). These results stem from the fact that the

temperature gradient at the melting front corresponding
to variable contact area is dependent on the ®lm thick-
ness for constant wall temperature, but independent of it

for constant heat ¯ux. The same reason is attributable to
the cases of the friction coe�cient as well as the unsteady

period. Regarding the e�ect of aspect ratio appeared in
Table 2, the discussion made in conjunction with Figs. 7
and 8 seems to be su�cient. In fact, in close-contact

melting of a constant-volume rectangular parallelepiped
solid with relative motion, it can be understood qualitat-
ively even without analysis that heat transfer and lubri-
cation con¯ict with each other in response to the

variation of contact area. However, in order to predict
the quantitative e�ects or characteristics, the present
analysis may be invoked.

5. Conclusions

An analytical approach has been carried out to pre-

dict the transient process of gravity-induced close-con-
tact melting occurring between a rectangular
parallelepiped solid initially at its melting temperature

and a ¯at plate on which either constant temperature
or constant heat ¯ux is imposed. The present model
accounts for not only relative motion between the

solid block and the plate, but also the solid±liquid den-
sity di�erence of the phase change material. By intro-
ducing a number of already approved simpli®cations
such as thin ®lm approximation, we have derived a set

of simultaneous ®rst-order ordinary di�erential
equations as the model equations.
Appropriate nondimensionalization and normaliza-

tion in reference to the established steady solution
yields simpli®ed model equations that explicitly depend
on the liquid-to-solid density ratio only. For each of

the heating modes, we successfully obtained a com-
pact-form analytical solution which agrees excellently
with the available numerical data. Of particular inter-
est is that the normalized liquid ®lm thickness is inde-

pendent of all the characteristic parameters, which
serves as a theoretical basis to de®ne the unsteady
period uniquely. The solution is also capable of re-

solving the distinctive behavior of solid descending vel-
ocity for non-unity density ratios during the early
stage of melting. This feature, which is consistent

qualitatively with the existing numerical simulations,
shows the importance of incorporating the density
di�erence in the analysis.

Table 2

The e�ect of geometric con®guration on close-contact melting of a rectangular parallelepiped in reference to the cube with equal

volume

Heating mode Constant wall temperature Constant heat ¯ux

Total steady melting rate �G�A�=G�1��ÿ1=4 ~H
ÿ1=2 ~H

ÿ1

Friction coe�cient �G�A�=G�1��ÿ1=4 ~H
ÿ1=2 �G�A�=G�1��ÿ1=3 ~H

ÿ1=3

Unsteady period �G�A�=G�1��1=2 ~H
ÿ1 �G�A�=G�1��1=3 ~H

ÿ2=3
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The aspect ratio of contact surface a�ects the melting
behavior in the form of a geometric function. This func-

tion is symmetric with respect to the square cross-sec-
tion, and by itself characterizes the three-dimensionality
of the present problem. As the perimeter of contact sur-

face increases under the same contact area, heat transfer
is shown to be at least enhanced along with the consist-
ent increase in friction regardless of the heating mode.

In this sense, a circular contact surface must be one of
the limiting cases in close-contact melting for any heat-
ing mode. It was also revealed through a typical example

that the characteristic length of the system is open to the
user's choice within the extent of the change in the
steady solution only. The present solution is applicable
to predicting the case of simultaneous variation in height

and cross-section of the solid.
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Appendix. Solution procedure for Poisson equation with

homogeneous boundary conditions

Presented brie¯y is the solution procedure for the

following Poisson equation appeared in association
with the pressure distribution in the liquid ®lm:

@ 2P

@x 2
� @

2P

@y2
� S �A1�

P�2L=2, y� � 0; P�x, 2W=2� � 0 �A2�
where S is independent of both x and y. Based on the

principle of superposition, the dependent variable can
be decomposed as

P�x, y� � P1�x� � P2�x, y� �A3�

d2P1

dx 2
� S, P1�2L=2 � 0� �A4�

@ 2P2

@x 2
� @

2P2

@y2
� 0, P2�2L=2, y� � 0;

P2�x, 2W=2� � ÿP1�x�
�A5�

In this procedure, the independent variables are commu-

tative with each other. A simple integration yields the
solution of Eq. (A4). Due to the inherent symmetry, Eq.
(A5) constitutes an eigenvalue problem, the solution of

which can readily be derived using the method of separ-
ation of variables. The ®nal solution emerges as

P�x, y� � S

241

2

(
x 2 ÿ

�
L

2

�2
)

�
X1
n�0

Kncos
ÿ
bnx

�
cosh

ÿ
bny

�35 �A6�

where the eigenvalues and the Fourier coe�cients, re-

spectively, are

bn �
�2n� 1�p

L
�A7�

Kn �
� ÿ 1�n4

Lb3n cosh
ÿ
bnW=2

� �A8�
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